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Abstract 
Motivation: Cancer dependencies provide potential drug targets. Unfortunately, dependencies differ 

among cancers and even individuals. To this end, visible neural networks (VNNs) are promising due to 

robust performance and the interpretability required for the biomedical field. 

Results: We design Biological VNN (BioVNN) using pathway knowledge to predict cancer dependen-
cies. Despite having fewer parameters, BioVNN marginally outperforms traditional neural networks and 

converges faster. BioVNN also outperforms a neural network based on randomized pathways. More 

importantly, dependency predictions can be explained by correlating with the neuron output states of 

relevant pathways, which suggest dependency mechanisms. In feature importance analysis, BioVNN 

recapitulates known reaction partners and proposes new ones. Such robust and interpretable VNNs 

may facilitate the understanding of cancer dependency and the development of targeted therapies. 
!"#$%#&$%$'()#*+),-.%/-/*'#'$0*1 Code and data are available at http://static.lichtargelab.org/BioVNN/.!
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1! Introduction  

Precision medicine aims to improve therapy based on individual patient 

and disease variations. In cancer, a promising approach is to target treat-

ment on specific genetic vulnerabilities, which encode mechanisms essen-

tial to the survival and proliferation of cancer cells. Genetic dependencies 

differ among cancers and individuals, unfortunately, requiring resource-

intensive experimental approaches (e.g., CRISPR screening (Meyers et 

al., 2017; Dempster et al., 2019b)) to map them. As these experiments are 

impractical to conduct on every patient, algorithmic methods to pinpoint 

dependencies may accelerate a general approach to discover cancer essen-

tial genes for personalized therapeutic targeting. 

One possible approach is deep learning (i.e., neural networks; NNs). It 

has been useful in biological applications, such as to predict sequence 

specificities of DNA- and RNA-binding proteins (Alipanahi et al., 2015) 

and to classify clinical images (Esteva et al., 2017). Despite robust perfor-

mance, however, these models are like black boxes. Their parameters are 

difficult to interpret due to their complex and nonlinear relationship with 

the output (Eraslan et al., 2019). While model interpretability is not uni-

formly crucial, it is highly desired in biomedical applications, to guide 

both clinicians and patients to make well-reasoned medical decisions. 

To improve interpretability, recent studies sought to encode biological 

knowledge directly into the architecture of the neural network. This led to 

parameters and output states that represent biological entities or subsys-

tems (Yu et al., 2018; Eraslan et al., 2019). These models were named 

visible neural networks (VNNs; Ma et al., 2018) as opposed to the tradi-

tional, black box neural network whose parameters are not interpretable. 

For example, Ma et al. (2018) used Gene Ontology (The Gene Ontol-

ogy Consortium, 2017) and Clique-eXtracted Ontology (Kramer et al., 

2014) to design the architecture of a neural network model, DCell, for 

predicting yeast cell growth given gene deletion genotypes. The same 

group further extended the model to predict drug responses and synergy 

(Kuenzi et al., 2020). Lin et al. (2017) and Peng et al. (2019) embedded 

protein-protein interactions, protein-DNA interactions and Gene Ontology 

into VNNs that reduce the dimensions of single-cell RNA-seq data. 

Eetemadi and Tagkopoulos (2019) used the transcriptional regulatory net-

work to build the architecture of the Genetic Neural Network to predict 

gene expression. These examples suggest that VNNs perform as well or 

better than traditional NNs and other non-NN methods while providing 

interpretable models/predictions. However, signaling pathway infor-

mation has not yet been used to design VNN. 

Page 1 of 8 Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

© The Author(s) 2021. Published by Oxford University Press. 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btab137/6286955 by guest on 27 M

ay 2021



Page 2 of 8Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btab137/6286955 by guest on 27 M

ay 2021



at least 1% of the cell lines (i.e., 7 cell lines). Then, we further narrowed 

our choice to genes present in Reactome. This yielded 9,488 genes as RNA 

expression features. 

The CRISPR screening measures the knockout effects of around 18,000 

genes on cancer cell growth and the more significant effects represent 

higher dependencies. The dependency probabilities (between 0 and 1) 

were used to set up a classification problem of interests, i.e., a gene has a 

significant effect on a cell line, as suggested on the DepMap webpage: 

samples with dependency ! 0.5 were defined as the positive class (target 

variable=1) and the samples with dependency < 0.5 were defined as the 

negative class (target variable=0).  

To choose genes as target variables, (which dependencies were pre-

dicted in the model output), we first selected genes that exist in both Re-

actome and CRISPR data. Then, to focus on genes with sufficient data for 

training and potential druggabilities, we further restricted our choice to a 

final set of 683 genes with (i) at least 6 positive samples; (ii) at least 6 

negative samples; (iii) at least one druggable gene category and at least 

one chemical interaction in DGIdb, (which records drug-gene interactions 

and potentially druggable genes) (Cotto et al., 2018) (v3.0.2). Note also 

that we excluded genes which were either nearly all dependent or nearly 

all non-dependent across cell lines as they could lead to overestimates and 

inaccurate performance evaluation. 

2.2   BioVNN design 

Like the convolutional layers combining pixel information based on spa-

tial relationship and forming higher-level abstraction in deeper layers, 

BioVNN layers integrate information based on gene-pathway and path-

way-pathway relationships and simulate the representations of higher-

level pathways in deeper layers. We hypothesize that neural networks only 

need to integrate the information of the genes/pathways which are func-

tionally related to predict dependency. In other words, we specifically look 

for the correlation among RNA expression and deletion status of all genes 

in the same pathway and the correlation among pathways having the same 

parents. Hence, the first hidden layer of lowest-level pathways selectively 

connects those input genes in the same pathways to the same neuron units, 

which look for the combinatory effects of expressed and knocked-out 

genes on cell growth/death. Then, it sends the integrated information to 

the neurons of corresponding parent pathways until reaching the root. 

These are important distinctions between BioVNN and FCNs. BioVNN 

selectively integrates the input based on pathway knowledge, whereas 

FCNs integrate all information from the previous layer (Fig. 1). 

The input of BioVNN consists of two parts (Fig. 1B). The first part is 

the RNA gene expression profile of the cell line. The second part is the 

deletion status that specifies which gene is “knocked-out” to simulate its 

effect on the cell line, inspired by DCell (Ma et al., 2018). With the archi-

tecture mimicking the 13-level hierarchy of 1,425 Reactome pathways, 

BioVNN predicts the dependency of the gene in the cell line specified in 

the input. Conceptually, BioVNN could be viewed as a sparsely connected 

feedforward network of 13 hidden layers (Fig. 1B). 

Mathematically, we denote the data set as ! " #$%&'( ' )& '(*+%&'( ,-./0 ' )& '( , 12'34' 5 , 63' 78' 9 , 63' :8;, where < is the number of RNA 

expression genes, 7 is the number of cell lines and : is the number of 

genes in the deletion status. The data used to compare the output predic-

tion of the model, )& '( is the dependency of the gene 9 in cell line 5. Input 

%&'(  is a concatenated vector of =>&'( , -.  and ?( , -0 . To reduce the 

curse of dimensionality and to focus on biologically relevant genes based 

on pathway knowledge, while predicting dependency of gene 9, we mask 

the RNA expression vector =& , -.  of cell line @5  as =>&'( ; =>&'( " =& A B( , 

where B( , -. is a binary vector like a filter to keep genes in the same 

pathways as gene 9 (1=same pathway; 0 otherwise). The genes in B(  are 

selected from the smallest pathways to largest pathways until reaching 100 

genes because smaller pathways represent stronger relationship than larger 

pathways. 

We denote the deletion status as ?( , a one-hot encoding vector of : 

genes (1=knocked out; 0 otherwise). ?( assigns the gene for predicting 

dependency and directs model’s attention to that gene. In this way, we 

formulate the problem as a single-label binary classification (i.e., agnostic 

to which genes) instead of a multi-label classification (i.e., treating differ-

ent genes as separate labels and adding more neurons in the output layers). 

The model could benefit from more samples (i.e., 7 C : samples instead 

of 7 samples), and the dependency prediction for different genes uses the 

same set of weights, which assumes the signal integration process through 

pathway hierarchy is the same for predicting dependency of different 

genes. 

We denote the output neuron state D&'(EFG of pathway H with input I&'(EFG as: 

 D&'(EFG " !JKLKMH NOPHQRSKJ7 TU5VR WX5:YPJ$I&'(EFG*Z[\@] (1) 

More concretely, when the lowest pathway H is at the beginning of hi-

erarchy, input I&'(EFG is the concatenated vector of its gene member input se-

lected from %&'(; when pathway H has children pathways, I&'(EFG is the con-

catenated vector of the output neuron states of its children pathways. 

The X5:YPJ  transformation in Eq(1) is defined as: X5:YPJ$I&'(EFG* "^EFGI&'(EFG _ `EFG . The weight matrix ^EFG
 with dimension of VaEFG C VbEFG 

and bias vector ̀
EFG

 with length of  VaEFG are the parameters to learn the rep-

resentation of pathway H . The length of D& '(EFG  vector, VaEFG " 7Pc@E32'
d2]e f :M7gYJ@Kh@iY:YV@5:@LPHRjP)@HkG, and the length of I&'(EFG vector 

is VbEFG. Because the representation of pathways with more gene members 

may be harder to learn, we set VaEFG proportionally to the size of pathway H, 
and 10 is the minimum of VaEFG for pathways with less than 34 genes. 

U5VR is the smooth, non-monotonic and non-linear activation function, 

which has been shown to outperform ReLU, Swish and others (Misra, 

2019). U5VREcG " c l mnopEVKhHLqMVEcGG. 
OPHQRSKJ7 is the normalization of mini-batch during training to re-

duce the internal covariate shift, which has been shown to achieve higher 

training rate and reduce overfitting (Ioffe and Szegedy, 2015). 

!JKLKMH is a technique to randomly drop neuron units during training, 

which has shown to reduce overfitting (Srivastava et al., 2014). The Drop-

out probability is set as 0.5 (Srivastava et al., 2014). 

The objective function consists of three parts, (i) the loss of the final 

output from the root of hierarchy, (ii) the loss of the outputs from other 

individual pathways, (iii) regularization. The function to be optimized is: 

3
7:r r XKVV Ws5i7K5t WX5:YPJ$D&'(EuG*Z ' )&'(Z

0
(vw

x
&vw _ 

y z XKVVEs5i7K5t WX5:YPJ$D&'(EFG*Z ' )&'(GF{u _ |}^}~@.              (2) 

Here, J is the root, the highest level of pathway hierarchy after integrat-

ing information over other pathway H . XKVV  is the binary entropy loss 

function, and the negative class was weighted as the ratio of positive sam-

ple number to negative sample number in training set. The output predic-

tion is s5i7K5t WX5:YPJ$D&'(EuG*Z , 12'34. The X5:YPJ function in Eq(2) 

transforms the vector D&'( to a scalar. s5i7K5t is an exponential function 

to convert the output scalar to probability. 

We include the loss term to compare the output scalar value of each 

pathway against the )& '(, so that every pathway could be auxiliary classi-

fiers to predict dependency on its own and could be optimized as features 

for parent pathways; y is set as 0.3 to adjust the contribution of the term 
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features in BioVNN are not random and are in agreement with the biolog-

ical knowledge of reactions. Of note, only pathway information but not 

reaction information was used to build the BioVNN architecture. These 

data suggest that BioVNN recovers the reaction knowledge from the train-

ing data on its own even if such knowledge is not provided during model 

construction or training.  

During the analysis above, we found outliers in groups of “Other 

genes”, that were not involved in the same reactions as the target variable 

gene, that also have high feature importance. In other words, BioVNN re-

gards those genes to be as useful in predicting dependency for the target 

variable genes as the reaction partner genes. Taking the NFKB1 and SASP 

pathway as an example (Fig. 6A), the gene of second highest weight in 

"Other genes” is CDK2, which could suggest a new reaction component 

with NFKB1. Indeed, a previous study showed that NF-"B bound to the 

promoter of CDK2, turned on its transcription and up-regulated the protein 

level of CDK2 (Liu et al., 2011). In the example of EP300 (Fig. 6B), the 

gene of highest weight in “Other genes” is HOXD4, which we propose as 

a reaction component with EP300. In fact, the protein interaction between 

HOXD4 and p300 has already been reported (Shen et al., 2001) but is not 

yet documented in the Reactome database. These findings suggest that 

genes with high feature importance, that are not reaction partners with the 

target variable gene, could be candidate reaction components, which have 

either not been discovered nor added in Reactome database. 

4! Discussion 

Robust and interpretable models are crucial for biomedicine, so we aimed 

to investigate how pathway knowledge can design VNNs for predicting 

and interpreting cancer dependency. We have demonstrated the ability of 

BioVNN to successfully predict cancer gene dependencies and provide 

interpretable predictions. While converging faster, BioVNN not only sig-

nificantly outperforms matched random group model but also marginally 

outperforms the fully connected network that has 193 times more param-

eters. BioVNN is also generalizable to predict dependency for cell lines in 

future releases of the DepMap data set. By examining the case of ITGAV 

and overall analysis, we showed that only related pathways have distinct 

neuron states between dependent and non-dependent cell lines whereas 

most other pathways do not. Specifically, ITGAV dependency could be 

explained by the low states of pathways related to immune system. 

This work illustrates how biological knowledge of signaling pathways 

can be integrated into a neural network architecture. Not only does it solve 

the issues of designing neural network architectures, but also it provides a 

mechanistic explanation of predictions. For future applications of this 

work to precision medicine, the RNA-seq expression data of patients 

could be used to predict personalized cancer dependent genes. 

The novel application of signaling pathways to design VNNs was 

proven to be useful for the first time. In addition, BioVNN uniquely uti-

lizes the pathway-guided feature masks and deletion status vectors to 

achieve two innovations: (1) training based on bulk RNA-seq data from 

only hundreds of human cell lines; (2) dependency prediction of hundreds 

of genes in single model. Given these innovations, a future direction 

would be to apply VNNs to other cell line data to predict and explain im-

portant questions like synthetic lethality and drug responses. The in silico 

states of VNNs could further explain the in vitro observations of cell line 

screenings to synergistically accelerate the development of precision med-

icine. With more development and validation in the future, these VNNs 

could be used to predict personalized drug targets and drugs in vivo for 

each patient with interpretable models to explain the predictions and guide 

their therapies providing better understanding of treatment mechanism. 

This study could be expanded in a few ways. First, other biological 

knowledge could also be embedded in the VNNs, due to the fact that Re-

actome contains around 10,000 genes, which is only about half of the hu-

man protein-coding genes and might limit performance. Many other path-

way databases (e.g., Pathway Commons (Rodchenkov et al., 2020), 

KEGG (Kanehisa and Goto, 2000), MSigDB (Liberzon et al., 2015), and 

PANTHER (Mi et al., 2019)) could be added to increase the coverage of 

genes as well as pathway knowledge. In addition, the gene group infor-

mation can also be non-human-curated, such as the gene groups detected 

from biological networks by computational algorithms (Cantini et al., 

2015; Wilson et al., 2017). Since those gene groups are not curated by 

human, they can be less biased and provide novel functional gene groups. 

Second, the model could incorporate more features of cell lines. One 

possibility is to integrate other types of genomics data besides RNA ex-

pression, such as DNA mutation (Ghandi et al., 2019), DNA methylation 

(Ghandi et al., 2019), copy number variation (Ghandi et al., 2019) and 

protein expression (Nusinow et al., 2020). These multiple biological ob-

servations of the same gene from different angles could be modeled as one 

state and then be used as features for predicting phenotypes. Another pos-

sibility is to incorporate other biological entities (e.g., non-coding RNAs 

(Ghandi et al., 2019) and metabolites (Li et al., 2019)). In both ways, the 

states of the cells could be simulated more precisely and completely. 
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