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Abstract
Protein–protein interactions create the macromolecular assemblies and sequential signaling
pathways essential for cell function. Their number far exceeds the number of proteins
themselves and their experimental characterization, while improving, remains relatively slow.
For these reasons, novel computational methods have important roles to play in understanding
the physical basis of protein interactions, and in constraining the molecular basis of their
specificity. This paper discusses methods based on multiple sequence alignments of protein
homologues and phylogenetic trees.

Introduction

Protein–protein interactions play a central role in health and
disease. When they occur as a series of sequential individual
events, they create signaling pathways and cellular networks
tightly regulated by transient protein–protein interactions.
When they occur in parallel, they mediate the assembly of
large macromolecular machines, such as the proteins bound
together in RNA polymerase II. Finally, abnormal interactions
among misfolded proteins can fuel the growth of toxic cellular
aggregates linked to neurodegenerative diseases, such as
Alzheimer’s, Parkinson’s, prion encephalopathies, as well as
type II diabetes and cystic fibrosis [1].

For these reasons, the control of protein–protein
interactions is increasingly seen as the next frontier in
pharmaceuticals [2]. Some drugs could be designed
to promote protein–protein complex formation, such as
Cyclosporine, which attenuates the immune response
otherwise leading to organ transplant rejection [3]. Other
drugs might inhibit protein interactions, such as a peptide
designed to block poly-glutamine aggregation and shown to
block Huntington’s disease in a fly model [4].

This paper will focus on the current state of computational
analysis of molecular interfaces and their evolution. After
general comments on the scope of the protein–protein
interaction problem, it will summarize the properties of protein
interfaces and the energetics of surface residues (hot spots).
Then it will consider the evolutionary information such as

residue conservation, correlations and phylogenetic trees, and
it will end with a review of machine learning applications.
Reviews of important topics such as docking, molecular
dynamics and Monte Carlo simulations can be found elsewhere
[5, 6].

Scope of the protein–protein interaction problem

Our understanding of protein–protein interactions is far from
complete. In order to estimate their diversity, an analysis
recently compared the number of genes in genomes from
bacteria, yeast, fly and worm with the number of protein–
protein interactions detected by yeast two hybrid [7–10],
and by affinity purification followed by mass spectrometry
[11, 12]. The result is a remarkably consistent linear
correlation (R2 = 0.96) [13]. This leads the authors to
estimate that, discounting proteins with more than 30%
sequence identity, one can expect of the order of 10 000
distinct structural types of protein–protein interaction.
However, the protein structure data bank [14] contains thus
far representatives of only 2000–3000 distinct interactions
[13, 15], or at most only 30% of the estimated total. To put
this number in perspective, the proteome is thought to contain
about 1000 distinct protein folds [16], about 80% of which
may already have a structural representative [17].

Many techniques aim to bridge this large gap in the
structural description of protein–protein interactions. A
number of biochemical and biophysical methods provide
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isolated structural clues, as recently reviewed in [18]. Electron
microscopy and electron tomography provide insights into
large molecular assemblies, typically at 15–30 Å resolution,
but the best data come from x-ray crystallography and
NMR spectroscopy of smaller complexes, which provide
detailed atomic resolution views of protein–protein interfaces
(resolutions of 2–5 Å). New structures accumulate very
slowly though: at an average rate of 200–300 per year [13].
Among these a few very large molecular machines are
solved at a rate of 1 or 2 per year: chaperonin [19]; the
proteasome [20]; RNA polymerase [21]; the ribosome [22];
the GroEL/GroES complex by NMR [23]; photosystem I
[24]; the light harvesting complex [25]; the signal recognition
particle [26] and viral structures [27, 28].

To complement these painstaking experimental studies,
computational techniques aim to analyze and to predict
protein–protein interactions. One basic approach is to
compute the physical interactions among atoms and molecules
to simulate proteins on computer, for example by using
molecular dynamics or force fields to score docking models
[5, 6]. This would be equivalent to de novo approaches of
protein structure prediction. Another approach, more akin
to homology modeling, uses evolutionary information. It is
based on the fact that sequences with more than 30% sequence
identity can be expected not only to share a common ancestry
and fold [29], but also common interaction propensities [30]
since their joint evolutionary analysis is sufficient to identify
their common functional sites [31, 32]. Specifically, a study
of domain pairs in different structures showed that they nearly
always interact similarly if they have greater than 30–40%
sequence identity [30]. This is not true if their similarity is
limited to having the same fold.

The methods we review below extract information from
the multiple sequence alignment (MSA), either based on
conservation of columns in MSA, or on various types
of correlations: between different columns of the MSA,
between columns and evolutionary trees or between the
trees themselves. In the former case, the idea is that the
column conservation reflects the evolutionary importance of
corresponding residues, while in the latter case the importance
is reflected in the fact that different residues (columns) or
tree branches change in ways that are coordinated with
functional changes. The basic information obtained by
using these techniques is the evolutionary importance of
residues in protein, without underlying physical or chemical
reasons. Information from MSA can be combined with
structural, physical and chemical properties, and integrated
using different machine learning methods.

The composition of protein–protein interfaces
depends on the type of interaction

Multiple studies have compared diverse types of protein–
protein interactions. One should first note that interface
residues have been defined in two ways. Either as those that
change by at least 1 Å

2
in solvent accessible surface area

(ASA) upon forming a complex [33]. Alternately, a residue
is part of an interface if its distance from the interacting

partner is smaller than some cut-off of 4 or 5 Å [34, 35].
The different interactions considered have typically included
homo-oligomers and hetero-oligomers (interaction between
identical or non-identical chains), obligate interactions
(without which the individual proteins are not found as stable
structures in vivo) and transient (which associate and dissociate
in vivo) or permanent interactions [36]. Functional differences
were also considered, including: enzyme-inhibitor, antibody–
antigen, enzyme complexes [37, 38].

The results showed that while general differences do
exist, they are seldom sufficiently pronounced to predict
either the structural or functional type of interaction [39].
Homomultimer interfaces are more hydrophobic than those
between heteromultimers [37, 40]. Similarly, the amino
acid composition and residue–residue contact preferences are
different in six types of protein complexes: same structural
domain versus different structural domains, permanent versus
transient complexes and homo-oligomers versus hetero-
oligomers [41]. A comparison of 16 weak and 23 strong
transient homodimers has shown that the weak homodimers
have smaller, more planar and more polar contact areas. The
strong transient dimers often undergo large conformational
changes upon complexation (or dissociation) [42]. Another
study of 122 homodimer interfaces has shown that the interface
is often made of a core of buried residues, surrounded by a rim
of solvent accessible residues [43].

Hot spots

The difficulty in identifying more specific and predictive
interfacial features may well lie in the fact that each interface is
itself heterogeneous: only a fraction of its residues contribute
to function or to the energetics of binding. As a result the
analysis of entire interface is always noisy, regardless of how
it is defined. The electrostatic contributions to protein–protein
interactions can vary from stabilizing to strongly destabilizing,
according to a study done on four protein complexes [44].
This unequal contribution of residues to binding free energy is
most directly demonstrated by alanine scanning mutagenesis
(whereby individual residues are mutated to alanine and the
protein function is then assayed) [45]. The few residues
that make up the bulk of binding energy define ‘hot spots’.
Among heterodimeric complexes, these hot spots appear to
be enriched in Trp, Tyr, Arg, residues that can make multiple
types of interactions [46], and they were often surrounded by
hydrophobic rings, presumably to occlude bulk solvent [46].
The total electrostatic contribution to binding was found to be
inversely correlated with buried total and non-polar surface
area [44].

To understand hot spots, a number of studies focused
on their energetics and modeled possible binding free energy
functions. A simple physical model only takes into account
limited changes in the backbone conformation and does not
explicitly include water [47]. The free energy function
has terms for the van der Waals interactions, Coulomb
electrostatics, hydrogen bonding, solvation energy and amino-
acid-dependent backbone angle probabilities. This model
identified 69% of hot spots on 19 protein complexes, and
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this improved to 79% when only the interface residues were
considered. The hydrogen bonding term proved to be the
most significant: without it hot spot prediction accuracy falls
to 47%. This simple model [47] was further shown to be
well correlated with more sophisticated molecular mechanics
Poisson–Boltzmann calculations [48], and it may thus capture
the essential physics of interactions. Nevertheless, the
physics of hot spots is still not entirely elucidated since a
different Monte Carlo study suggests instead that hydrophobic
interactions are the most relevant ones [49].

From a different perspective, other studies have focused
on the structural conservation properties of hot spots. Ma et al
[50] studied the correlations between interface propensities of
structurally conserved residues and experimental enrichment
of hot spots. Based on ten protein families and the data on
amino acid preferences in hot spots from [46], the authors
obtained a correlation coefficient of 0.7. This study was then
extended to compare the coupling of structurally conserved
residues and of hot spots across protein interfaces [51].
Residues from distinct chains were considered coupled if the
distance between the centers of any of their atoms was less
than 5 Å. These conserved residues were coupled across
the interfaces nearly twice as often than expected by chance,
and their association with hotspots was 5.2 times greater than
expected by chance. Lastly, residue packing was higher around
hot spots versus non-hotspots (on average 69.2 Å

3
versus

38.1 Å
3
), and a strong correlation (r2 = 0.94) between the

hot spot contribution to free energy change and across the
interface local atomic packing has been found [51]. The
authors pointed out that such packing excludes the solvent,
and thus may stabilize an interaction by lowering the dielectric
constant and increasing the electrostatic and hydrogen bond
interactions [46, 51]. Overall, however, the interacting pairs
of interface residues, the charge-conserved residue pairs seem
to be disfavored across the interface [51], in keeping with the
heterogeneity of evolutionary pressures within an interface.

A recent study suggests that the insufficiently dehydrated
hydrogen bonds play an important role in protein interactions,
based on a data set of 1476 high-resolution protein structures
[52]. Most backbone hydrogen bonds are ‘wrapped’
by nonpolar groups, except for a few hot spots which
are ‘underwrapped’. These hot spots become dramatically
stabilized by the removal of water, indicating their important
contribution to binding sites [52].

Recently, small-world networks [53] have been used to
study protein interactions. The basic idea of this approach is
to represent proteins as networks (graphs), where residues are
the nodes and interactions are the edges [54]. These networks
can be used to identify the residues at or near hot spots
[55, 56].

Evolution of interfaces

Besides energetics and structure, a different line of study of
interfaces considers evolution. Most simply, residues involved
in interactions are less likely to vary. This hypothesis can
be quantified by considering the conservation of columns
in MSAs of related proteins from multiple organisms, and

calculating the information entropy or some related measure
of conservation. Thus, based on the similarity scores of
MSAs, the interface residues of six homodimer families were
more conserved than the rest of the protein surface [57].
Similarly, the interfaces in a larger set of proteins that included
homodimers were also more conserved (based on the Von
Neumann entropy) than the rest of the surface, but this fact
alone was insufficient to predict the location of the interface
[58].

Conservation can nevertheless be useful to distinguish
true interfaces in protein dimers from false ones due to
crystallization artifacts [33]. In 53 homodimers and 65
monomers, when information entropy was combined with
the change in residue solvent accessible surface area upon
complexation, they could discriminate between biological
and non-biological protein–protein interface with an accuracy
of 86% [59]. Size and conservation together can thus
discriminate biological from non-biological contacts [33].

A problem with this simple model of evolutionary
conservation is that for it to work best, interfaces would
have to be immutable. But this would require in turn that
each distinct interaction in protein networks would depend on
entirely different proteins. In fact, we know that the opposite is
true: pathways are opportunistically built by cannibalizing and
adapting already existing protein parts such as SH2, SH3, PDZ
and many other modules or domains. Similarly, enzymes such
as kinases have repeatedly mutated to alter ligand specificity
while maintaining their key phosphorylation capability. A
more natural model of evolution should account therefore not
only for the absolute conservation of key functional residues,
but also for the systematic variation of specificity determinants
as they adapt to different evolutionary constraints.

Evolutionary trace of proteins

In recognition of these issues, a set of techniques called
evolutionary tracing (ET) was developed to identify patterns
of variation in multiple sequence alignments that match the
patterns of functional divergences suggested by phylogenetic
trees [31]. Methods based on this idea have been tested
repeatedly and shown to predict functional sites [60–65]. The
key concept of ET [31] is to build a phylogenetic tree based
on the alignment and then to rank every column according
to whether its residue variation pattern correlates with the
branching pattern of the evolutionary tree. As the tree is used
from root to tip to divide the alignment into a hierarchy of
groups and subgroups, ET asks each time whether a column’s
residues are invariant within individual groups, even if they
vary among them. In its most straightforward implementation,
a residue has rank 1 if it is invariant in the entire family. It
has rank 2 if it is different between the first two branches of
the tree, but is invariant within each one. It has rank 3 if
it is variable between at least two of the first three branches
but is invariant within all three and so forth. If the rank of
a residue is low, its natural variations are necessarily always
associated with major evolutionary branchpoints suggesting
that they matter. If it is high, the opposite is true: it
varies even between nearly identical species suggesting that
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residue matters little. This simple ranking procedure assigns
to every residue a relative rank of importance during evolution.
Remarkably, top-ranked residues display a number of highly
desirable features: they cluster spatially in native structures;
they map out the functional sites of a protein and they indicate
the determinants of functional specificity.

The universal 3D clustering of evolutionary important
residues in protein structures is now established. It arises
by mapping the better ranked ET residues onto the protein
structure in order to visualize unusual areas of the protein
where evolutionary influential residues co-locate. Such co-
localization was seen first in protein that binds other proteins,
such as SH2 and SH3, and in proteins that binds DNA
[31, 66]. More recently, clustering of top-ranked trace residues
was observed to be significant, compared to a random draw
of residues, in 45 out of 46 proteins [32] and again in 92%
of a larger test set of 79 proteins [67]. Other studies in other
laboratories yielded similar conclusions [65, 68, 69]. These
many observations were finally formalized and generalized
to the entire PDB to show that clustering of evolutionarily
important residues identified by ET is a universal property of
protein [70].

The ability of ET clusters to predict functional sites
has also been repeatedly shown. For example, bona fide
predictions of interfaces in the G protein α-subunit [71, 72],
in regulators of G protein signaling [73, 74], in the nuclear
transport carrier NTF2 [75], have been validated by mutations
and in the case of RGS by crystallography as well. More
generally, larger scale retrospective control studies show that
ET successfully narrows the docking searches for binding
sites, and that its predicted functional sites overlap those
that are known structurally [32], and biochemically as well
[62]. In [32], the trace cluster contacted the ligand in 37
out of 38 protein–ligand complexes. Considering a collection
of 79 proteins, the functional site overlap was shown to be
statistically significant in majority of proteins (range 79–
100%, depending on the definition of overlap and the statistics
used) [62].

Another key property of ET methods is to identify
the biologically meaningful residue variations that underlie
functional specificity. This was first suggested by the
correlation across the protein–DNA interface between the
variation of trace residues and of their contact response
element base pairs [66]. It was tested experimentally by
swapping trace residues between two members of the RGS
family and thus exchanging their activity. Strikingly, the same
type of ET-guided redesign of transcription factors from the
basic helix–loop–helix family enabled the reciprocal swap
of developmental proneural pathway programs from a frog
oocyte to a fly embryo [76]. Experiments are now underway
to further test predictions of specificity determinants in G
protein-coupled receptors [77]. Other studies along these
lines were aimed at predicting protein functional subtypes [78]
and DNA-binding specificity [79].

The ET approach is not without difficulties, however.
Accuracy depends in essential ways on the quality of the
multiple sequence alignment, like other techniques, and of the
corresponding phylogenetic tree. Both can be controversial

and limit automated analysis [80]. One may also wish to
account for different evolutionary rates [63]. For now, an
approach that performs as well as, or even better, than manual
tracing combines entropy-related methods with the use of tree
phylogeny information: the importance of a given alignment
column position is calculated by a weighted sum over all
evolutionary groups of the entropy of the position in each
one [81]. Another caveat is that, since the reliability of trace
predictions is inferred from their unusual 3D clustering pattern,
it is impossible to assess trace quality in the absence of a
structure.

Evolutionary correlations

Instead of probing correlations between residue variation and
tree variation, other ideas consider directly the correlations
between trees or between residues. First, as noted above,
interacting binding partners seem to coevolve so that variations
linked to phylogenetic changes in one partner are reflected
by changes in the other. Accordingly, the phylogenetic
trees of interacting protein should be mirror trees, meaning
that the trees obtained by reducing alignments of the two
proteins to the set of organisms common to both should be
superimposable, ideally. This was quantified by calculating
the correlations between the distance matrices of the trees
[82, 83]. These matrices contain distances between all possible
protein pairs from the multiple sequence alignment. One
study of six families of ligand–receptor pairs was thus able
to find 79% of all known binding partners. This approach
was extended to a variety of proteins [84]: 13 proteins with
two interacting domains, 53 Escherichia coli proteins and
to a whole genome of 4300 E. coli proteins. The authors
assert that the similarity between phylogenetic trees can be
used as a predictor of protein–protein interaction with more
than 66% of true positives detected at correlations >0.8. If
so, the correlations between distance matrices seem to be a
good statistical indicator of protein interactions. An important
limitation is that the correlations are between distance matrices
rather than between the actual phylogenetic trees.

Correlated mutations for pairs of multiple sequence
alignments have been used to detect interacting protein pairs
or their domains. This ‘in silico two-hybrid method’ has been
used to predict physically interacting proteins in E. coli [85].
Its main limitation seems to be the availability of large multiple
sequence alignments for each pair of proteins.

Alternatively, it is also possible to consider correlations
directly between interacting residue by alignment columns.
The idea is that changes in one column will be matched in
another column if the residues are coupled functionally [86] or
energetically [87]. For example, within a protein, the average
pairwise distance between the residues on the structure tends
to be smaller for correlated pairs [88], and this can be used to
discriminate between physiological and crystallographic and
incorrect 3D configurations of protein domains [89].

There are several unresolved issues related to the use of
correlated mutations in MSAs. Once a correlation between
residue pairs is found, it is not trivial to decide whether
it reflects functional correlations or just a phylogenetic
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relationship [86]. Also, a comparison of several algorithms
based on covariance in MSAs (among them, the methods used
in [87, 88]) showed a surprising lack of agreement in prediction
of important residues [90–92]. This may represent many
complementary views of a large set of cooperative interactions.
Background residue conservation has been suggested as a
possible reason for the lack of agreement between correlated
mutations algorithms [90] (different covariance algorithms
deal with conserved alignment columns in different ways:
most tend to agree for the columns which are highly covarying
or highly conserved). A comparison of predictions based
on correlated mutations with the experimentally determined
coupling between residues (using double mutant cycles)
shows that these algorithms can find residue pairs which are
physically close [91]: however, a direct correlation between
these predictions and thermodynamically coupled residues has
been found in only one of the four data sets.

Predicting interacting residues using machine
learning

Given the variety of these approaches, it is important to
consider current attempts to combine physical, chemical and
evolutionary analysis of residues at protein–protein interfaces.
Thus far, neural networks have been trained to classify with
an accuracy of 70% whose surface residues do or do not
interact with another protein based on their side chain and
their neighbors [34, 93, 94]. While this is promising, it
should be mentioned that the data set used in [93] contained
some homodimers, while about half of the data set used in
[34] were the interfaces between heavy and light chains of
antibodies (both of these cases should make the classification
easier: homodimer interfaces are on average hydrophobic,
and the interface between heavy and light antibody chains is
much more conserved than the antibody–antigen interface).
Moreover, these results may not improve on the ET approach,
which has already been validated experimentally.

There have been related attempts to predict interacting
residues but without any structure information. A support
vector machine and a Bayesian classifier were used to classify
surface residues into interacting and noninteracting sets by
exploiting the fact that interface residues tend to form clusters
in the primary amino acid sequences in [95]. While none
of the features were based on the structural parameters, this
work still required to obtain the starting set of surface residues
since only those were used in classification. On the set of
77 complexes they achieve accuracy of above 70%. Only
the information extracted from primary sequence and a neural
network were used on a set of 333 transient proteins [35].
Without giving the overall accuracy, the authors state that
for the best 34 cases (out of 333) 94% of predictions were
confirmed experimentally. Recently, the same problem was
tackled by considering evolutionary importance of sequence
residues. A support vector machine-based prediction of
interface residues reached the accuracy of 64% [96]. The
full range of achieved specificity–sensitivity results is shown
in figure 1.

Figure 1. Specificity versus sensitivity plot for prediction of protein
interaction sites without using the structure, as obtained in [96]. The
circled point corresponds to accuracy of 64%.

Another support vector machine-based study used various
combinations of feature vectors to predict interacting residues,
with or without the use of structures [97]. The results were
slightly improved compared to [93, 34], while the sequence-
only-based prediction resulted in the average prediction
performance of ∼10% higher than random.

Summary and outlook

The characterization of the critical determinants of protein–
protein interactions holds the key to understanding the
molecular basis for the assembly of macromolecular machines
and of cellular networks. Not only would it allow the design
of drugs or of engineered proteins that selectively block or
trigger entire signaling pathways, but it would allow us to
predict more reliably quaternary structures, which are difficult
to derive experimentally. Bulk statistical analysis of interfaces
have not led to accurate predictions, perhaps largely due to the
heterogeneity of interfaces, where only a few residues forming
the hot spots while the others contribute little or not all. But
aside from the study of amino acid composition, physical
models of binding free energy, and evolutionary models of
correlation among residues, trees and structures are much
more promising. In particular evolutionary tracing has been
extensively validated, is now fully automated, and was shown
to accurately predict both the location of interfaces and the
determinants of their specificity. Together with the correlation
between hot spots and structurally conserved residues, it seems
only a matter of time before an accurate PDB-wide view of
protein interfaces emerges. The ultimate goal of these studies
is the prediction of protein–protein interactions. Several of
the methods presented here are difficult to benchmark against
small and subjective data sets. This also can only improve in
future as a result of structural genomics and physical modeling.
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