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Getting past appearances: the many-fold
consequences of remote homology

Olivier Lichtarge

In the absence of other biological information, the detection of remote homology is a prerequisite step toward
understanding the function of a new protein. A novel method based on structure comparison improves our
ability to do this automatically and systematically.

The benefit of large-scale, high-throughput
approaches to address biological questions
lies in the wealth of data they provide.
Sequence and structure databases are grow-
ing exponentially, as are those for gene
expression and protein—protein interac-
tions. But the price we pay for this bounty is
an abundance of sequences and structures
without known functions, and patterns of
expression and interactions with unclear
physiological relevance. To recover the bio-
logical context required to interpret these
data, the essential first step is nearly always
to find arelated protein for which biological
information is available. Hence genome
sequence annotation, protein structure pre-
diction, and the elucidation of protein—pro-
tein interactions all stand to gain from
improved methods to recognize remote
homology — that is, common evolutionary
origin. For these reasons, and given the
accelerating pace at which new structures
are being solved, the innovative, structure-
based approach to remote homology detec-
tion proposed by Dietmann and Holm! on
pages 953 of this issue of Nature Structural
Biology is especially timely.

Protein homology is most often estab-
lished by telltale amino acid identities
between sequences. However, chance varia-
tions in the sequence invariably take place,
even at important functional residues, such
that over time nonconservative substitu-
tions chisel away at the original sequence —
so much so that eventually the sequence
identity between divergent proteins is no
longer significantly greater than that among
random proteins. This threshold, near 20%
sequence identity, defines the ‘twilight
zone', at which point the structure becomes
essential for identifying homology. Even as
protein sequences evolve beyond recogni-
tion, the core of their structure remains rel-
atively spatially invariant?; therefore related
proteins most likely have similar folds. The
converse statement, that unrelated proteins
have unrelated folds, is unfortunately not
true — there are many fewer ways to pack
o-helices and [-sheets tightly in three
dimensions than there are proteins, so
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Fig. 1 From structure to function. This pathway illustrates a possible way to link structures pro-
duced by the Structural Genomics Initiative to biological functions. The green section shows how,
until now, it was possible to sort various structures in a database (designated A to H) by comput-
ing a DALI Z-score!4, which is how much the similarity of two structures deviates from the expect-
ed mean similarity of unrelated proteins. This information could then be summarized in a fold
dendrogram. Dietman and Holm! have now added two new steps, shown in the yellow panel.
First, a neural network estimates the likelihood of homology between all pairs of proteins in the
fold dendrogram. Second, the authors introduce a ‘transitivity’ requirement, function s, such that
two branches of homologous structures may be joined into a single one only if all possible struc-
ture pairings between the two branches give rise to a positive value s. As shown here, s({A, B,
C}{D, E, F}) is positive so these structures may all be joined into a single superfamily. On the other
hand, the negative value of s when branch {G, H} is also considered suggests these two structures
should be in their own superfamily. The implications of such an automated and systematic classifi-
cation scheme is shown in the pink panel. If proteins A to F are remote homologs, a reasonable
hypothesis is that they share some of their functional characteristics. This can be tested by direct
experiment, or by analyzing the results of evolution’s own experiments — for example, by deter-
mining which proteins in a homologous family share common functional sites?3-283, or by examin-
ing genomes for evidence that two distinct domains are on occasion covalently linked or that
their evolution is correlated2021, suggesting a possible protein—protein interaction.

unrelated proteins often have duplicate
folds®. How, then, is one to establish
whether a common fold indicates diver-
gence or chance? One approach is through
detailed examination of each structure.

Structure-based classification

This approach is the premise behind the
Structural Classification Of Proteins
(SCOP)4, a database curated by a few
experts who sort proteins into a four-level

hierarchy. The first level, Class, describes
the type and distribution of secondary
structural elements in each protein. The
second level, Fold, specifies the connectiv-
ity and spatial relationship between these
secondary structural elements. The third
level, Superfamily, groups together pro-
teins with sufficient functional or struc-
tural similarity to infer a common origin.
The fourth level, Family, encompasses
proteins whose sequence identity leaves
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no doubt as to their homology and func-
tional similarity.

Importantly, the structural and func-
tional clues that help define SCOP super-
families are subtle. For example, even
though the sequence identity between
ribosome anti-association factor 1F6° and
L-arginine:glycine amidinotransferase® is
insignificant (8%), both proteins have a
similar fold of five BBap repeats arranged
in approximate five-fold symmetry’.
These proteins were initially considered to
belong to distinct superfamilies because
they could at best be superposed over only
half of one protein, due to insertions, and
even then the root mean squared (r.m.s.)
deviation remained relatively poor over
the backbone atoms (3.5 A) due to devia-
tions from five-fold symmetry in both
proteins®. The superposition of individual
repeats, however, shows that the two
helices and three strands pair up well, as
do the three loops between them. Thus, a
common pattern does emerge, supporting
ajoint classification into one SCOP super-
family, but only after both proteins are
broken into smaller structural units and
compared piecewise”8. Such careful analy-
sis depends on visual reasoning and estab-
lishes SCOP as the gold standard of
remote homologies. Yet how long can a
manual approach keep pace with high
throughput structure determination?

To address this issue, two other well-
known structural classifications resort to
automation. One is CATH (each letter
stands for one of its four hierarchical levels:
Class, Architecture, Topology, and
Homology)?, in which algorithms define
the boundaries of protein domainst® and
the program SSAP assigns them to homol-
ogous superfamiliest! based on the similar-
ities in the three-dimensional environment
of residues. Other automated procedures
are being added to speed up the intake of
new structures2. Another popular classifi-
cation scheme is FSSP®3, Families of
Structurally Similar Proteins. FSSP is fully
automated and unlike SCOP and CATH,
makes no attempt to define any a priori
hierarchy. Rather, it uses the program
Dali* to measure structural similarity
between proteins in terms of a Z-score (Fig.
1, green panel). The Z-score for a given pair
of structures is the number of standard
deviations by which their similarity
exceeds the mean of the distribution of an
all-against-all comparison of similarity
among a selected set of structurally unre-
lated proteins. Z-scores can be used to con-
struct a ‘tree’ of protein structures, with
similar structures (having high Z-scores
amongst themselves) clustered together in

the terminal branches of the tree. High Z-
scores increase the likelihood that two pro-
teins had a common evolutionary origin;
when sequence identity is greater than 25%
and the Z-score is above 6, FSSP structure
pairs match SCOP or CATH superfamilies
nearly perfectly. However, the agreement
falls to nearly half when identity is below
20%, and much less if the Z-score is below
6 (ref. 15). Thus, a fully automated classifi-
cation of structures into divergent groups
has remained elusive, until now.

Automated identification of
homology

In their paper, Dietmann and Holm! intro-
duce novel and objective measures to parti-
tion the tree of structures into
superfamilies (Fig. 1, yellow panel). This is
accomplished by way of two innovations.
First, the authors build a neural network to
estimate whether pairs of proteins in the
tree are homologous. The network’s input
describes attributes of each protein’s
sequence, structure and even function
when available, and the output is a score
from 0 (no homology) to 1 (perfect
homology). Second, they develop an
objective criterion to decide when two
branches of homologous sequences ought
to be joined into a single superfamily at
their common node. This is done only if
the neural network indicates that most
members of one branch are significantly
homologous to members of the second
branch. The rationale is that homology is
transitive: two proteins that each shares
ancestry with a third protein must be relat-
ed. Although simple, this constraint proves
powerful enough to improve the reliability
of predictions compared to either the Dali
Z-score or the neural network taken alone.
The authors can retropredict with near
perfect reliability almost three quarters of
SCOP superfamilies, the visual inspection-
based gold standard.

How is this useful for the functional
annotation of novel structures? This is an
important question since the function of
most structures to come out of the
Structural Genomics Initiative will be
unknown?6, Dietmann and Holm test this
in two ways. First, they remove the func-
tional information from the neural net-
work input and observe that this degrades
the prediction of SCOP superfamilies
only slightly (6%). Second, they apply
their method to 15 Structural Genomics
targets whose structures have been deter-
mined recently. Four are entirely new
folds and three others are known folds but
with little evidence of an evolutionary link
to known superfamilies. The other eight

nature structural biology ¢ volume 8 number 11 « november 2001

fall within well-characterized superfami-
lies, and thereby can be associated with
plausible biochemical functions. For
example, MTH152, a protein that was
solved as part of a structural proteomics
effort in M. thermoautotrophicum has
now been associated with the activity of a
ferric reductase (110R). This link remains
to be tested experimentally.

From homology to function

The biological implications of such evolu-
tionary linkages in terms of protein chem-
istry must be interpreted with care,
however. Database studies show that the
biochemical activities of homologues
with greater than 40% sequence identity
are nearly identical, and that broad func-
tional classes are often preserved down to
25% identity!”. Nevertheless, different
members of a single superfamily can sup-
port entirely different biochemical activi-
ties. For example, 25% of enzyme
superfamilies contain proteins that carry
out unrelated functions, possibly through
entirely different chemistriest® at different
functional surfaces®.

Similarly, the possible interactions hinted
at by a protein’s history must be evaluated
critically. Clearly, knowledge of a protein
domain’s superfamily may suggest possible
protein—protein interactions. For example,
the fact that two domains are part of a single
polypeptide chain in one genome has pre-
dictive value for their possible interaction in
genomes where they are not covalently
linked?2, Moreover, such putative coupling
hypotheses can be fairly specific, since, over-
all, 91% of domain superfamilies are linked
in the same polypeptide chain to no more
than two other superfamilies. Yet, some
domains are known to recombine promis-
cuously with different partners in different
genomes?, and the number of plausible
couplings for any one domain is bound to
increase as more genomes are sequenced.

Thus, determining to which superfamily
a novel protein (the query) belongs is only
the first step in a series of hypotheses that
ultimately aim to focus experiments on its
most likely functions (Fig. 1, pink panel).
When the query belongs to a functionally
characterized family, a number of possible
functions and binding interactions may be
suggested, each of which will each require
testing. But as an increasing number of
structures are solved and superfamilies
grow larger, one must ask whether enough
sensitive biochemical assays will be
designed for every reasonable hypothesis
in every single superfamily. This large
experimental burden could be reduced by
further computational pre-filtering. One
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approach is to determine the location of
the active sites in the various members of a
superfamily?-28 and then check whether
they correspond to the same location and
preserve the character and geometry of the
key residues associated with one of these
functions. This strategy is able to distin-
guish between DNA binding domains of
nuclear hormone receptors that homod-
imerize head-to-head over palindromic
response elements from those that dimer-
ize head-to-tail over repeated response ele-
ments®, A recent study suggests the
viability of this strategy on a large scale¥.
Until these additional computational
and experimental studies can be performed
on a genomic scale, the danger exists that
functional hypotheses driven by the recog-
nition of remote homology will be taken at
face value. If so, erroneous functional
annotations are bound to occur and, in
turn, propagate throughout databases as
they become the sources for further false
hypotheses®.. This is one reason why man-
ual oversight of protein homology classifi-
cation will remain essential, not only as a

gold standard but also to minimize auto-
mated error propagation. At the same
time, the automation of this process is crit-
ical to cope with a massive inflow of data
and to shed light on the biases and incon-
sistencies that humans will inevitably
introduce. Dietman and Holm! make an
important step in this direction.
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A snapshot of Nature’s favorite pump

Philip J. Thomas and John F. Hunt

The 4.5 A map of the MsbA protein, a putative lipid A transporter from Escherichia coli, provides the first detailed
structural model for the transmembrane domain and cytoplasmic ‘loops’ of an ABC transporter and the
geometric relationship of these regions to the ATP-binding cassette motor domain. Based on this structure,
specific hypotheses for the mechanics of the pump can now be formulated and tested.

Nature has evolved a variety of protein
machines to convert the chemical potential
energy present in ATP into the osmotic
work of moving solutes from one side of the
lipid bilayer to the other. ATP-binding cas-
sette (or ABC) transporters represent the
most common and ancient solution to this
problem. This class of proteins forms the
largest gene superfamily in many of the
completely sequenced microbial genomest
and contains a number of members whose
function or dysfunction is central to serious
human pathologies such as cystic fibrosis,
hypercholesterolemia, adrenoleukodystro-
phy, Stargardt’s disease and multidrug resis-
tance2. Unlike other ATP-driven pumps,
such as the F-, V- and P-type ATPases,
which catalyze the ATP-driven transport of
cations exclusively, the ABC transporters
couple ATP hydrolysis to the movement of a
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staggeringly diverse set of solutes, including
large proteins, peptides, lipids, pigments,
sugars, amino acids and anions. In addition
to being fundamentally interesting, the
ABC transporters play a central role in bac-
terial virulence and human genetic disor-
ders, thereby motivating the practical need
for a structural understanding of their
functional mechanism.

As reported in a recent issue of Science,
Chang and Roth3 provided a major mile-
stone in this effort by characterizing the
crystal structure of a complete ABC trans-
porter, the MsbA pump from Escherichia
coli, at 4.5 A resolution. MsbA is hypothe-
sized to function in flipping lipid A—and
possibly other anionic lipids — across the
cytoplasmic membrane; this hypothesis is
partially based on the observation that
MsbA mutants cease to transport lipids

between the inner and outer membranes
at nonpermissive temperatures®.

Structure of the ABC transporters

The MsbA structure provides important
insight into the three-dimensional organi-
zation of all of the ABC transporters, as they
share a common architecture comprising
two ATP-binding cassettes (ABC’s) and two
transmembrane (TM) domains, each with
6-8 a-helices connected by a set of large
cytoplasmic ‘loops'*-3. The conservation of
the ABC sequences is striking in that trans-
porters as diverse as MsbA and the human
cystic fibrosis transmembrane conductance
regulator (CFTR) share 27% identity and
54% similarity in their cassettes. The con-
servation of the TM domains is weaker but
still significant, as MsbA and CFTR share
18% identity and 38% similarity in the first
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