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Abstract

A common difficulty in post genomics biology is that large-scale techniques of data collection often strip away
information on the biological context of these data. The result is a massive number of disconnected observations
on sequence, structure, and function from which underlying patterns and biological meaning are obscured. One
solution is to build computational filters that pick out sufficiently few facts, relevant to a query, that their rela-
tionship is immediately apparent and experimentally testable. Typically, these filters rely on mathematics and
statistics, and on first principles from physics and chemistry. We show here that evolution itself can be used to
filter sequence and structure data in order to identify evolutionarily important amino acids. A general property of
these residues is that they form clusters in native protein structures and point to regions where mutations have
the greatest biological impact. The result is an accurate method of functional site annotation that is scalable for
structural proteomics.

Introduction

Protein functional sites are intimately connected with
biological activity and their characterization bears on
drug design (Kuntz, 1992) and protein engineering
(Hellinga, 1998). To the extent that functional sites
can be described as structural units, their character-
ization may also lead to 3-dimensional motifs that are
suitable for function annotation in novel protein struc-
tures (Nussinov and Wolfson, 1991, Wallace et al.,
1996, de Rinaldis et al., 1998). Unfortunately, protein
functional sites cannot be predicted from protein
structure alone. For example, when complexes reveal
physical interaction sites between proteins, not all
interfacial residues contribute equally to binding
affinity and specificity (Pearce et al., 1996). The best
approach to link a residue with its function remains
mutational analysis (Pearce et al., 1996, Fersht,
1987), but this is expensive and necessarily dependent

on assays that are protein, cell, and species specific.
Given the rapid growth of solved protein structures, a
key problem is to develop a method of functional site
identification that would be as accurate as mutational
analysis but also scalable and cost-efficient.

The Evolutionary Trace model (ET) aims to mimic
mutational analysis in the laboratory by using the
experiments that already occurred during evolution
(Lichtarge et al., 1996b). This model is depicted in
Figure 1, and it states simply that (i) sequence varia-
tions are equivalent to mutations and that (ii) evolu-
tionary divergence is equivalent to a functional
change as measured by an assay. Taken literally, these
two hypotheses imply that functionally important res-
idues are those where sequence variations are linked
to evolutionary divergences. In a multiple sequence
alignment of n related proteins with an associated
family tree �, we therefore define trace residues, at
rank k, as those that are invariant within each of the
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first k branches of � but that do vary in at least one
of the first k−1 branches. At one extreme, trace resi-
dues with a rank of 1 are invariant and, presumably,
the most important to function and structure. At the
other extreme, residues that vary as far as between
adjacent terminal leaves of tree � will have ranks
approaching n and, presumably, be among the least
important (Lichtarge et al., 1996b). This process is
illustrated in Figure 2, where k � 4.

This model leaves open the exact type of tree to
be used. This is because any number of hierarchical
functional classification schemes can be built by a
user, and ET probes for each one the hypothesis that
there are residues commonly important to these
sequences when they are classified functionally
according to this tree. This model can also be modi-
fied to tolerate conservative substitutions within
branches (Landgraf et al., 1999, Armon et al., 2001),
thereby increasing sensitivity at the expense of speci-
ficity (Lichtarge et al., 1996b). In practice, however,
we find that sequence identity trees are good default
approximations of evolutionary and functional diver-
gences in individual protein families. Together with
strict invariance between branches, they are suffi-
ciently robust and sensitive to trace sequences, assign
ranks to residues, and identify structural clusters of
top-ranked trace residues in structures that predict
functional sites and guide mutational analysis. We
review these data and then discuss progress on the
generalization of ET towards functional site charac-
terization on a proteomic scale.

Functional site predictions in G� and in RGS

Control studies in modular signaling or DNA binding
domains validated ET (Lichtarge et al., 1996b,
Lichtarge et al., 1997), but the first bona fide Evolu-
tionary Trace prediction was in the �-subunit of G
proteins. A site including the C-terminal, the distal
helix �5, and strand �6 was predicted to mediate G
protein activation through direct contacts with G Pro-
tein Coupled Receptors (GPCR) (Lichtarge et al.,
1996a). Subsequent and independent alanine-
scanning mutagenesis of 106 residues then identified
a GPCR interface composed of most of the same res-
idues in the same secondary structure elements
(Onrust et al., 1997). A recent mutational study fur-
ther supports the role of helix �5 in GPCR-mediated
activation (Marin et al., 2002).

This was followed by a second blind prediction,
this time in Regulators of G protein Signaling (RGS).
RGS proteins normally bind onto activated G� (com-
plexed to GTP) and enhance its intrinsic rate of GTP
hydrolysis, whereby G� turns itself back off (com-
plexed to GDP) (He and Wensel, 2002). In the visual
pathway, an additional interaction of the G�-RGS
complex with PDE� (the visual effector protein) fur-
ther boosts the GTP-ase accelerating property of RGS
9 but slows down that of RGS7. In order to under-
stand the molecular basis of PDE�’s differential effect
on GTP hydrolysis by G�, we performed an ET anal-
ysis of the RGS family. This identified a novel site
on the surface of RGS, called S2, at which residues
differ markedly in RGS7 and RGS9. A direct interac-
tion S2-PDE� was also suggested by the proximity of
S2 in the G�-RGS complex to a site in G� shown to

Figure 1. The Evolutionary Trace model mimics mutational analysis.
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interact with PDE� in peptide studies (Skiba et al.,
1996). Together these data suggested a low resolution
heterotrimer model where PDE� straddles the
RGS-G� complex and interacts directly with S2,
which, in turn, mediates PDE�’s effects on the GTP-
ase accelerating property of RGS proteins (Sowa et
al., 2000).

This model predicts that a swap at S2 of cognate
residues from RGS9 into RGS7 should confer to the
RGS7 chimera many of the properties of RGS9 with
respect to PDE�. Out of 65 different residues between
RGS7 and RGS9, we therefore focused only on the 7
in S2, and after 5 mutation experiments identified 3
key residues shown in Figure 3. Mutations E353L and
P360R, diminished the GTP-ase activating property
of RGS7 to a level comparable to wild type RGS7 in
the presence of PDE�, and adding PDE� made no
difference. S367G then conferred onto the RGS7
mutant an activity level near that of RGS9, and add-
ing PDE� fully restored activity to that of RGS9 in

the presence of PDE�. These experiments therefore
confirmed that S2 plays a key in the PDE� interac-
tion. Moreover the low-resolution quaternary
structure model of PDE� straddling the RGS-G�
complex and binding to S2 was independently veri-
fied crystallographically (Slep et al., 2001), as shown
in Figure 3.

These protein-specific studies uncover some of the
general mechanisms that trigger and regulate G pro-
tein signaling. But more generally, they suggest that
evolutionary analysis can link raw sequence and
structure data to the molecular basis of function with
sufficient resolution to target mutational experiments
to the relevant regions of a protein and to engineer
novel functional specificity into them. Other protein-
specific studies by us and by others have been
reviewed and support the validity of this Evolution-
ary Trace model (Lichtarge and Sowa, 2002, Innis et
al., 2000, Landgraf et al., 2001, Aloy et al., 2001,
Pritchard and Dufton, 1999, Armon et al., 2001).

Figure 2. The Evolutionary Trace mechanism. The proteins in the multiple sequence alignment are divided into groups by phylogeny. The
consensus sequence of invariant residues is generated for each group, and those that are invariant in each one but possibly variable between
groups are called trace residues (red). These are then mapped onto a structure to visualize a functional site. Completely invariant residues
with rank 1 are shown in blue and group-specific residues are shown in red.

161



Large-scale identification of functional sites

Two recent studies test the scalability, accuracy, and
automation of the evolutionary trace model. They
show that statistically significant clusters of trace res-
idues are a universal finding in proteins [18], and that
their overlap with known functional sites is also sig-
nificant [32]. Trace clusters are defined as collections
of trace residues within 4Å of at least one other trace
residue in the same cluster. For a given protein, let Tk

be the number of residues ranked � k, Nk be the num-
ber of clusters that they define, and Sk the size of the
largest cluster. In the first study, the structural signifi-
cance of the trace clusters was then measured from
distributions Dcluster (Number of Clusters) and Dsize

(Size of the Largest) expected if the Tk residues were
picked randomly. Each distribution was approximated
by 5000 repeated random samplings, the significance
thresholds used were 5%, 1%, 0.03% and they were
linear functions of protein size in each case.

The test set consisted of 46 proteins selected from
the PDB so as to represent a variety of structural
classes and biological functions. About half a dozen
were from prior analyses, the others were selected

blindly. Over the entire test set, 24 were uniquely of
eukaryotic origin, 18 were both eukaryotic and
prokaryotic, 2 were prokaryotic only, and 2 others
were viral. Sequence identity was typically between
30 to 50% in the various protein families, and their
structures represented a diversity of folds as well,
including 19 with �/� folds, 15 were all �, 7 all �, 1
multidomain, and one was a membrane protein.
Sequence alignments were taken as is, but obvious
sequence fragments were discarded. The web site
http://imgen.bcm.tmc.edu/molgen/labs/lichtarge/
trace_of_the_week/traces.html describes these pro-
teins.

We find that at a p-value of 0.05, 95% and 92% of
test proteins have statistically significant clusters of
trace residues by the Number of Cluster and Size of
the Largest cluster statistics, respectively. This repre-
sents 45 of 46 true positives by one measure and 44
of 46 by the other. These fractions remain high (75%
for Dcluster and 85% for Dsize) and (65% for Dcluster

and 74% for Dsize) at p-values of 0.01, and 0.003 re-
spectively. All seven protein families with 30 or fewer
homologs reached a p-value of 0.003, including the
smallest family that only had 19 sequences. This is
consistent with our experience that families with 15
or more homologs are traceable. Moreover, side-by-
side comparisons of the largest predicted, significant
cluster with the physical binding site, defined by
proximity to a ligand when available, show that trace
clusters match the functional sites (see the above
URL). False negatives are not easily quantified since
clusters that do not match known functional sites can
simply represent internal residues that are important
to folding, structural stability, allostery, or they may
represent an as yet unrecognized functional site.

In order to quantify how well trace clusters match
experimentally determined functional sites, and thus
ET’s predictive accuracy, a follow-up study compared
their overlap to that expected by chance (Figure 4).
To further reduce a possible selection bias, the test set
was enlarged to 86 proteins, those above that had
ligands, 29 enzymes whose active sites had been bio-
chemically characterized in the literature (Todd et al.,
2001), and 20 from a first set of Structural Genomics
Initiative (SGI, the worldwide effort to solve the
structure of every single natural protein fold) struc-
tures solved in complex with a ligand. Given many
possible ways to measure the overlap of trace clus-
ters and true sites, we used three statistics that take
clustering into account. The Total Connected Resi-
dues (TCR) statistic, which counts any residues in

Figure 3. This functional site was predicted by the Evolutionary
Trace and later confirmed by mutation experiments and crystallo-
graphically. Here the complex between RGS9 (clear), G� (yellow),
and PDE� (cyan) shows direct contact between the residues pre-
dicted to be important in RGS9 (S2, red) and the interface of G�
and PDE�. Three of the residues (labeled 353,360,367) in S2 were
identified as key residues by mutation experiments.
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any cluster that intersect with the true site. The Larg-
est Cluster Overlap (LCO), which counts only resi-
dues common to the largest trace cluster and the true
site. The Average Overlap (AO), which is the number
of trace residues in the true site divided by the num-
ber of trace clusters that overlap that site. Finally a
fourth statistic, which is the hypergeometric (HG) dis-
tribution, simply counts the number of trace residues
in the functional site without regard to clustering.

We find that by the most favorable statistic, TCR,
there is always one rank for which trace clusters sig-
nificantly overlap true functional sites, as shown in
Figure 5 for a p-value of 0.05. Even by the least
favorable non-cluster-based HG statistic, this remains
true in 86% of proteins. These numbers must be
interpreted with care because they do represent mul-
tiple samplings: one for each rank. However, these
ranks are not independent of one another, and in fact
the overlap with the true site tends to be significant at
most ranks where clustering is significant. With the
TCR statistic this true in ˜90% of ranks, and in ˜75%
of ranks by HG. Even though these numbers are av-

eraged over all proteins, they do not vary markedly
among the enzymes, the SGI proteins, or proteins
from our original data set.

To further test scalability, we automated trace anal-
ysis by using the standard BLAST Evalue < 0.05 as
the sole criterion for sequence selection. The perform-
ance degraded only marginally (Figure 5, blue bars)
since the overlap of trace cluster remains significant
well-above 90% of proteins according to TCR, and in
nearly 75% by HG. We expect that the gap with man-
ual trace results will narrow as the sequence selection
heuristics improve.

The accuracy of trace clusters can also be ascer-
tained by measuring how much of the true site is
overlapped by the largest significant trace cluster.
Figure 6 shows that this cluster covers more than 50%
of the site in 70% of proteins, and less than 25% in
fewer than 15% of proteins. Since the manual traces
were more effective at removing sequence fragments
and evolutionary outliers, their results are consistently
better than those of automated traces. Fractional over-
lap is especially large in enzymes, for which the ‘true

Figure 4. Trace residues (right) in pyruvate decarboxylase (PDB code: 1pvd) form significantly larger and fewer clusters than the same
number of randomly selected residues (left), and they overlap the functional site far more.
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Figure 5. In four statistical measures, a large fraction of automated traces (blue) or manual traces (red) overlap significantly with known
functional sites for at least one rank.

Figure 6. The largest significant trace cluster covers most of the known functional site in both the automated traces (left) and manual traces
(right). The values in each pie chart reflect the fraction of proteins that cover the proportion of the known functional site indicated in the
range shown at bottom.
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site’ was determined mutationally and therefore tends
to be small. Conversely, fractional overlap is smaller
in proteins where the ‘true site’ is a large interface
determined, for lack of a better method, as all the
residues that are within 5 Å of the ligand. This over-
estimates the importance of many residues, and it is
likely that the small trace cluster appropriately
reflects the small number of key interfacial residues.

Future directions

In theory, these studies depend on adequate alignment
and tree building methods, as well as on error free
sequences. Certainly it is possible to make alternative
uses of phylogenetic trees and modify the definition
of branch specific invariance (Armon et al., 2001),
and to exploit other aspects of structural clustering
(Landgraf et al., 2001). But, in practice, we used here
standard CLUSTALW and distance-based UPGMA
trees. The Evolutionary Trace model proves suffi-
cient, as described above, to extract from sequence
and structure databases detailed information on the
functional importance of residues and of their struc-
tural neighbors. Protein specific applications have
been, thus far, to rank the relative evolutionary
importance of residues and identify functional sites
(Lichtarge et al., 1996b, Pritchard and Dufton, 1999,
Innis et al., 2000); to derive functional specificity
determinants and target them for mutations in order
to engineer novel functions (Sowa et al., 2000, Sowa
et al., 2001); to build low resolution models of pro-
tein-protein quaternary structure (Lichtarge et al.,
1996a); to infer functions shared by distant homologs
(Lichtarge et al., 1997); to align and study GPCR
(Sheikh et al., 1996, Sheikh et al., 1999, Baranski et
al., 1999, Dean et al., 2001) and to study protein-
protein interaction and docking (Aloy et al., 2001).
Finally, the large-scale studies demonstrate that the
ET model is general and scalable so these small scale
studies should be replicable in any other protein in the
proteome (Madabushi et al., 2002, Yao et al., 2003).

In the context of the Structural Genomics Initia-
tive, there are many ways in which Evolutionary
Trace identification of functional sites may be in-
creasingly useful to understand protein function. If a
protein’s biological activity is known, its functional
sites and key determinants of specificity can be iden-
tified and then targeted for modification or drug de-
sign. When biological activity is only partially
known, functional annotation of protein structures

and homologous genes can focus precisely on the
presence or absence of key trace residues that confer
activity rather than on overall sequence identity (Li-
chtarge et al., 1997, Aloy et al., 2001). Finally in the
absence of any functional information at all, func-
tional convergence may be inferred by recognizing
that some region in a novel protein bears local struc-
tural similarities to the Evolutionary Trace site of a
functionally characterized protein, thereby extending
to 3-dimensions the typical functional motif searches
in sequence space (Fischer et al., 1993, Stark et al.,
2003). Even more generally, it will also be useful to
understand the mechanism by which the ET model
extracts information from sequences and structures.
Simply put, ET mimics mutational analysis but with
important differences. Since it views sequence varia-
tions as mutations, ET’s ‘in vivo’ mutations are al-
ways active and adequate for survival. Since it views
tree nodes as assays, ET’s functional assays are also
far more numerous then typically available in the wet
lab. Thus for any proteins with enough sequence ho-
mologs in the database, ET benefits from large num-
ber of evolutionary mutation and assay experiments.

A more formal view is that the tree embodies a
hierarchical classification scheme that filters, at each
branchpoint, the residues that are most functionally
and structurally relevant. A novel but basic principle
of protein structure, function, and interaction, thus
appears to be that these trace residues form structural
clusters and networks that link key residues and func-
tional sites to one another. As the SGI produces ever
more structures, it will be interesting to study each
one from an Evolutionary Trace perspective and
understand how these trace clusters and networks
inform studies of protein folding, function, and inter-
action.
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